Log in

Login to your account

Username *
Password *
Remember Me
From Brain Science to Intelligent Machines

A BCI Operated Hand Exoskeleton based Neurorehabilitation System for Movement Restoration in Paralysis

This project is funded by UK India Education and Research Initiative (UKIERI) phase-II and the Department of Science and Technology (DST) Government of India under the DST-UKIERI Thematic Partnership program (DST-2013-14/126). This international collaborative project has three main components brain-computer interface (BCI), exoskeleton, and rehabilitation which are being undertaken under respective leaders Professor Girijesh Prasad of Neural Systems and Neuro-technology Research Team, Professor Ashish Dutta of Indian Institute of Technology Kanpur (IITK) India, and Professor Suzanne McDonough of Institute of Nursing and Health Research under the co-ordination  of the PI Professor Prasad. Main project objectives are as follows:

  • Develop a lightweight three-finger exoskeleton with embedded sensors, capable of replicating human motion for physical practice. It will be controlled by users’ EMG and EEG signals in assist-as-needed mode;
  • Develop a novel brain-computer interface (BCI) that facilitates EMG and EEG for controlling the exoskeleton and provides  visual neurofeedback to ensure focused physical and MI practices;
  • Conduct pilot trials to evaluate the effectiveness of the exoskeleton along with BCI in movement restoration

It is known that much enhanced upper limb recovery can be gained if stroke sufferers with limb impairments, perform intensive active physical practice (PP) in conjunctionbci with motor imagery (MI) practice (or mental practice) of activities of daily living. Although a PP can be performed with the help of a therapist, it is expensive and limited and dependence on the therapist may lead to a passive practice. To this end, it is proposed to investigate development of a lightweight neuro-rehabilitation system for people with stroke that facilitates intensive active PP as well as MI practice with the help of a robotic exoskeleton and neuro-feedback from a novel non-invasive brain-computer interface (BCI). It will consist of a three-finger exoskeleton that can be worn by the subjects and will be controlled through the users’ Electromyography (EMG) and Electroencephalography (EEG) based BCI commands in assist-as-needed mode. Additionally visual neuro-feedback from BCI will help ensure highly focused performance of PP as well as MI practice. The exoskeleton will be superior to existing ones as it will be able to bci2replicate natural human finger motion with more degrees-of-freedom and be directly aimed at restoring critical hand functions, for grasping and manipulation of objects. The system will undergo pilot trial on a set of healthy individuals as well as people with impairments.